
3/8/2004

 Page 1 of 6

Computed Items

You can create new data items in the OLAPQuery, Results, Pivot, Results and Chart
report sections by building equations to compute data items, or by applying functions to
existing data items. Computed items are like normal data items, and can be included in
reports or re-used to compute other data.

For example, you can modify the Amount Sold item by building an equation around it,
multiplying by the Unit Price item and renaming the resulting item 'Revenue'. You can
also apply a scalar function such as Cume to Amount Sold and return each individual
value as a cumulative running total, or simply multiply Amount Sold by the local tax rate
to find the tax owed on each sale.

Tip In the Query section, you can modify data items as they are retrieved from the

server, or add new computed items. In Results and Pivot, you can add and modify
them.

Important In BrioQuery 6.0, Brio moved from its own proprietary scripting language to
the industry-standard, JavaScript. BrioQuery uses a JavaScript engine that does not
accept European or non-US number formats. See the Brio JavaScript Reference on-line
help for more information about using JavaScript.

To compute or modify a data item

1. On the shortcut menu, click Add Computed Item to add a new item, or select an

item and click Modify Column to modify an existing computed item.

2. Rename the item to reflect the result of the computation.

3. Define the new data item by building an equation in the definition box.

· Click Functions to apply scalar functions to Reference items using the Functions

dialog box.

· Click Reference to display the Reference dialog box, and select Request line

items to place in the equation, or use as function arguments.

· Use the buttons provided in the Computed Item dialog box to insert arithmetic

and logical operators into the equation at the insertion point.

· You can also type item, function and operator names directly in the panel. The

names are case-sensitive, but you will need to replace spaces in item names with
underscores (‘_’).

4. When the equation is complete, click OK.

3/8/2004

 Page 2 of 6

Results computed items are displayed in the Outliner in blue.

Field Definitions

Available fields and options for this dialog box are:

Name Assign the name of the column title that you want to appear in the

computed column. The default title name for each computed item added
to the report is "Computed", then "COMPUTED2" and so on (sequentially
numbered). If you assign a name to a COMPUTED ITEM, which is
identical to an existing scalar function name, BrioQuery numbers the title
name starting with number 2. For example, if you name a column Rank,
which already exists as a scalar function name, BrioQuery reads and
displays the name Rank2.

Definition Build a computation by adding items from the Variables, Functions and

Operators panels, or by typing directly into the panel at the cursor. The
maximum length of a computed item definition is limited to the text length
of 32 K.

Operator Click the buttons to add arithmetic or logical operators to a computation in
buttons the Definition panel. Operators are added at the insertion point.

For Operator definitions, see the Operator table below.

Functions Apply a function to a selected data item in the Definition panel.

Reference Display the Reference dialog box to add items from the Request line to the

equation in the Definition panel.

Tip You can apply multiple scalar functions to selected items within the
equation.

Options Display the Data Type list box and set the data type when performing
mixed-data type computations.

For more information about this feature, see Adjusting Data Types.

Operator buttons

Click the following buttons to add arithmetic logical operators, mixed expressions, and
apply functions to a computation in the Definition panel. Operators are added at the
insertion point.

3/8/2004

 Page 3 of 6

Arithmetic operators An arithmetic operators take numerical values (either
logical or variables) as their operands and return a single
numerical value.

+ Add

- Subtract

Tip! If a computed item appears on a Query's Request Line, and that item's definition
uses subtraction, such as "Mytable.Column1-5", a SQL error can occur. The exact
error depends on the database, but the most common error would indicate an
undefined name was used. Because databases allow hyphenated names, BrioQuery
attempts to deal with such names intuitively. Thus, an item definition like
"Mytable.Column1-5" will be interpreted as a name. In order to ensure it is treated as
subtraction, include a space on either side of the hyphen/subtraction operator. For
example, entering the computed item definition as Mytable.Column1 - 5" will ensure
that correct SQL is generated.

* Multiply

 / Divide

 (Begin sub-operations

) End sub-operations

++ Increment

-- Decrement

In the Query section, the following Operator buttons can be used only at the local
metatopic level.

 + Add

- Subtract

 * Multiply

/ Divide

(Begin sub-operations

) End sub-operations

In the Results section, all Operator buttons are available.

Arithmetic An arithmetic operators take numerical values (either logical or

3/8/2004

 Page 4 of 6

Operator variables) as their operands and return a single numerical value. In
the following example, var1 has been assigned the value 5 and
var2 has been assigned the value 4.

Mod (%) The modulus operator returns the remainder of dividing var1 by

var2.

For example, 5 % 4 returns 1.

Comparison A comparison operator compares its operands and returns a logical value
Operators based on whether the comparison is true or not. The operands can be

numerical or string values. When used on string values, the comparisons
are based on the standard lexicographical ordering.

In the following example, var1 has been assigned the value 3 and var2 has
been assigned the value 4.

= = Returns true if the operands are equal.

For example, 3 == var1

!= Returns true if the operands are not equal.
For example, var1!=4

< Returns true if left operand is less than right operand.

For example, var1 < var2

<= Returns true if left operand is less than or equal to right operand.

For example, var1 < = var2
 var2 < = 5

> Returns true if left operand is greater than or equal to the right operand.

For example, var2 > var1

>= Returns true if left operand is greater than right operand.

For example, var2 > = var1
 var1 > = 3

Statements Executes a set of statements if a specified condition is true. If the
condition is false, another set of statements can be executed.

if…else if executes a set of statements if a specified condition is true. The specified

condition may be another statement and can include other nested if
statements. Braces, {}, must enclose multiple statements.

If the condition is false, another set of statements can be executed if the
optional else statement has been included in the script.
A sample if … else statement looks likes this:

3/8/2004

 Page 5 of 6

if (condition) {
statements1
}
else {
statements2
}

Logical Operators Logical operators take Boolean (logical) values as operands and
return a Boolean value.

AND (&&) Use the logical operator AND to connect two conditional

expressions and retrieve records only if each expression is true,
since this determines if a condition is true.

Computed items will not be retrieved if any condition belonging to
a conditional expression is false.

The AND logical operator is usually nested within another
conditional expression, for example, expressions which use if and
else statements.
For example
if ((OS == ‘Windows’) && (Item_Type == ‘Modem’))
{‘Windows’} else {‘other’}

OR (||) Use the or logical operator to specify a combination of expressions
and retrieve records that include at least one of the expressions.
For example, if one of the words is Washington or Oregon, every
record with the expression "Washington" and every record with the
word "Oregon" is included.

Typically the OR logical operator is nested within other
conditional expression, for example, expressions which use if and
else logical operators. For example if you want to assign
Washington and Oregon to the "Northwestern Region" and all
other states to "Other Regions", you write:

if ((State = = ‘Washington’)|| (State == ‘Oregon’)) {‘Northwestern
Region’} else {‘Other Regions’}

NOT (!) Use the NOT logical operator to compute and show items more
accurately stated in a negative way. In effect, all records are
retrieved except those that fulfill the conditional expression.

You enter the conditional expression with the NOT (!) logical
operator preceding the conditional expression.:

3/8/2004

 Page 6 of 6

 The conditional expression can be a simple value or nested within
other conditional expressions, for example, expressions using
AND and OR. A combined condition expression that uses NOT is
true if the conditional expression following NOT is false. A
combined conditional expression is false if the conditional
expression following NOT is true. For example, suppose you are
looking to list all states that are not in the Northwestern region. In
this case, you enter the conditional expression:

if (! (State = = 'Northwestern Region')) {‘Other Regions’}

Tips

· Type the word null (no quotes) into the expression panel to represent null values.

· All text string constant values entered in expressions must be enclosed in single

quotes. All date constant values entered in expressions must be enclosed in
quotes. Numbers can be entered without quotes.

· To join items with a space or other character, simply reference or type items and

strings into the expression panel and join them with the + operator (for example,
City + ‘, ‘ + State). To join without additional characters, use the Concat function.

· In division operations, the divisor may not be null or equal to zero. If a data item

serves as the divisor in an expression (for example, 5000 / Units_Sold) and
includes null or zero values, first create a computed item using if/else logic to
remove null and zero values, and then compute the item containing the division
operation.

· Two date items may be subtracted, but not added. The Add Month function adds

an integer value to a date.

· You may not nest functions inside the Sum, Cume, Chr, and Breaksum functions.

For a detailed description of JavaScript operators, see the online Brio JavaScript
Reference.

